Substrate DNA and cofactor regulate the activities of a multi-functional restriction-modification enzyme, BcgI.

نویسندگان

  • H Kong
  • C L Smith
چکیده

The BcgI restriction-modification system consists of two subunits, A and B. It is a bifunctional protein complex which can cleave or methylate DNA. The regulation of these competing activities is determined by the DNA substrates and cofactors. BcgI is an active endonuclease and a poor methyltransferase on unmodified DNA substrates. In contrast, BcgI is an active methyltransferase and an inactive endonuclease on hemimethylated DNA substrates. The cleavage and methylation reactions share cofactors. While BcgI requires Mg2+and S -adenosyl methionine (AdoMet) for DNA cleavage, its methylation reaction requires only AdoMet and yet is significantly stimulated by Mg2+. Site-directed mutagenesis was carried out to investigate the relationship between AdoMet binding and BcgI DNA cleavage/methylation activities. Most substitutions of conserved residues forming the AdoMet binding pocket in the A subunit abolished both methylation and cleavage activities, indicating that AdoMet binding is an early common step required for both cleavage and methylation. However, one mutation (Y439A) abolished only the methylation activity, not the DNA cleavage activity. This mutant protein was purified and its methylation, cleavage and AdoMet binding activities were tested in vitro . BcgI-Y439A had no detectable methylation activity, but it retained 40% of the AdoMet binding and DNA cleavage activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catal...

متن کامل

TstI, a Type II restriction–modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide

Type II restriction-modification systems cleave and methylate DNA at specific sequences. However, the Type IIB systems look more like Type I than conventional Type II schemes as they employ the same protein for both restriction and modification and for DNA recognition. Several Type IIB proteins, including the archetype BcgI, are assemblies of two polypeptides: one with endonuclease and methyltr...

متن کامل

Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease

The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recogniti...

متن کامل

Organization of the BcgI restriction–modification protein for the transfer of one methyl group to DNA

The Type IIB restriction-modification protein BcgI contains A and B subunits in a 2:1 ratio: A has the active sites for both endonuclease and methyltransferase functions while B recognizes the DNA. Like almost all Type IIB systems, BcgI needs two unmethylated sites for nuclease activity; it cuts both sites upstream and downstream of the recognition sequence, hydrolyzing eight phosphodiester bon...

متن کامل

Establishment of molybdeum cofactor detection system in Escherichia coli

In the current study, in order to verify the presence of bacterial Molybdenum cofactor, an indirect approach was made by showing the activity of BisC enzyme as a reporter gene. The activity of the BisC enzyme is dependent to Bis-MGD cofactor. BisC enzyme converts biotin sulfoxide to biotin under abiotic stress condition and it can also reduce TMANO and because of this property it was applied on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 18  شماره 

صفحات  -

تاریخ انتشار 1997